

Advanced Gas Turbine Manufacturing Technology Roadmap Executive Summary

Prepared by Energy Florida

With contributions and coordination of

The CAPE – Consortium for Advanced Production and Engineering of Gas Turbines

and Rotating Machinery

Project ID# 70NANB15H069 ©2018 Energy Florida

May 31, 2018

This document was prepared by Energy Florida, Inc. and the Consortium for Advanced Production and Engineering of Gas Turbines and Rotating Machinery (CAPE) under a cooperative agreement (Project ID# 70NANB15H069) from the National Institute of Standards and Technology (NIST), U.S. Department of Commerce. The statements, findings, conclusions, and recommendations are those of the author(s) and do not necessarily reflect the views of NIST or the U.S. Department of Commerce.

License for use or distribution of this public summary is hereby granted to US Department of Commerce, NIST

All other rights reserved Energy Florida, 2018

Executive Summary

Scope & Objectives of the Advanced Gas Turbine Manufacturing Technology Roadmap

In 2013, the Gas Turbine Association published a highly detailed and comprehensive study on the requirements to keep the US gas turbine industry competitive on the national and global market considering recent investments in this technology by other nations. Several end-state technology goals and timelines were suggested by this report, which Energy Florida is adopting and extending to gas turbines other than large natural gas-fired combined cycle turbines. The end-state technology goals are as follows:

- 1. Achieve 67% efficiency for combined-cycle natural gas fired generation systems within 15 years
- 2. Achieve a 10% relative efficiency improvement(s) for smaller-scale, distributed generation and/or load-following power generation turbines and gen-sets within 15 years
- 3. Achieve 10% overall efficiency improvement in gas turbine engines for aviation propulsion within 15 years
- 4. Enable and support accelerated adaptation and adoption of new technologies, materials and processes by the gas turbine manufacturing sector and the service and repair community
- 5. Cut time-to-market and development costs for Gas Turbine technologies

This roadmap developed by Energy Florida and the CAPE identifies practical approaches, collaborative efforts and research projects to realize these end-state technology goals. To this end, the Consortium for Advanced Production & Engineering of Gas Turbines (CAPE) roadmap outlines the necessary steps for developing new industrial materials, manufacturing processes, inspection and data protocols, maintenance repair and overhaul activities, and workforce development and safety issues to advance the next generation of gas turbine and rotating machinery manufacturing technologies here in the United States. The CAPE roadmap makes recommendations for the adoption and implementation of collaborative, pre-competitive industry practices cross-cutting between the various gas turbine industry sectors, as well as between the power generation and aviation gas turbine industry, in order accelerate gas turbine technology development and commercialization and increase the global competitiveness of the US gas turbine industry.

Roadmap Process & Methodology

Being industry-led, Energy Florida and the CAPE have actively and continuously conducted industry interviews and one-on-one industry discussions with its partners, as well as a series of technical working groups comprised of technical experts drawn from leading industry and academic stakeholders active in the advanced turbine design, engineering, manufacturing and maintenance industry. This allows our consortium to have unique insights into industry demands, requirements and challenges, ongoing projects and efforts and available opportunities for partnerships. This industry information is utilized to open communication between the various industry partners by providing networking expertise and through the hosting of industry workshops to further the open exchange and discussion among all industry branches and partners.

The networking efforts coordinated by Energy Florida aim to match various industry partners for collaborative projects, as well as matching these partners with potential funding opportunities, whose pursuit is assisted by the Gas Turbine Technology Network.

On behalf of the CAPE consortium, the consortium's leadership conducts regular briefings in Washington, DC to promote industry objectives of the entire gas turbine industry and to act in an advisory role to federal and state policymakers. In addition, our consortium has worked very closely with the relevant industry associations: the Gas Turbine Association and the Aerospace Industries Association, which represent the industrial gas turbine manufacturers and aviation gas turbine engine manufacturers respectively, as well as many of their key suppliers, customers, and small and medium enterprises associated with the gas turbine and aviation propulsion industry. We have also worked with key relevant technical societies, including the American Society for Mechanical Engineers (ASME) and the American Institute for Aeronautics and Astronautics (AIAA), both of whom have been key partners in conducting outreach and convening stakeholders in support of this effort.

Through the development and maintenance of consortia such as the CAPE, long-lasting pre-competitive collaborative industry partnerships are formed, subsets of which are organized and coordinated to pursue specific industry goals, such as the implementation and realization of small-scale technical demonstration projects, which offer immediate returns for the partners, as well as the pursuit of larger scale funding.

Focus Area Analysis - Industry Priorities

The CAPE team has conducted extensive interviews with gas turbine industry partners and completed wide spread market research to identify technical areas of interest for the acceleration of gas turbine technology advancement. From the resulting list of initially over 100 technology areas, this industry input has led to the selection of the following technology areas as being identified to have the highest impact on technology advancement. The presented list of topics represents technology areas, in which collaborative, precompetitive technology development efforts are possible due to the high cross-cutting impact on the entire gas turbine industry.

These topics are organized into five technical focus areas which are outlined below:

Focus Area A: Materials for Hostile Environments & Extreme Conditions (MHEEC)

Focus Area B: Additive Manufacturing that Enables New Design(s) and Engineering for Advanced Gas Turbines

Focus Area C: Non-destructive Evaluation (NDE) & Digital Thread

Focus Area D: Maintenance Repair and Overhaul (MRO)

Focus Area E: Workforce Development & Safety

Executive Summary Graphics: Technical Focus Area Recommendations

In this executive summary, each focus area is represented by a summary graphic highlighting the list of technical topics presented in the roadmap under each respective focus area. These graphics provide a high-level overview of the main findings and recommendations in each focus area, including color-coded priorities, timelines and information regarding the constituencies within the gas turbine industry (Original Equipment Manufacturers, Small and Medium Enterprises, Academia, Government & National Labs or All) that are impacted or engaged within each individual recommendation.

A. Materials for Hostile Environments & Extreme Conditions (MHEEC)

The recommendations contained within the Advanced Gas Turbine Manufacturing Technology Roadmap Focus Area on Materials for Hostile Environments & Extreme Conditions (MHEEC) outline the necessary steps for developing new industrial materials, testing standards and certification parameters that will the introduction of new materials into the manufacturing of gas turbines and rotating machinery.

Primary subtopics included within the Materials for Hostile Environments & Extreme Conditions (MHEEC) focus area include:

- Existing Materials, Hybrid Materials & Refractory Metals
- High Entropy Alloys
- Ceramic Matrix Composites
- Thermal Barrier Coatings

Priority recommendations within the Materials for Hostile Environments & Extreme Conditions (MHEEC) focus area include but are not limited to:

- Evaluate Existing Alloys (for use with additive manufacturing or other new processing methods)
 - High gamma-prime, ODS & shape memory alloys
- Develop Hybrid/Multi-Material Components
- Ceramic Matrix Composites (CMCs):
 - o Attachment Techniques, Coating/Durability improvements, Repairability
- Operational Lifing Analysis for Barrier Coatings
- Materials Properties Databases for Next-Generation or New Materials
 - Existing Alloys (for AM applications), 2700 deg F CMCs, High Entropy Alloys

		Focus Area A	: Materia	ls for Host	ile Enviro	onments 8	Extreme	Conditior	s (MHEEC	C)				
#	Stakeholder(s)	Priority			A. 1. Exi	sting Mate	ials, Hybrid	Materials 8	Refractory	/ Metals				
а	All	High	EVALUATE EXISTING A		•									
b	All	High	HYBRID/M	ULTI-MATE	RIALCOMPO	ONENTS								
с	Academic	High	RESEARCH	RESEARCH NEW REFRACTORY ALLOY COMPOSITIONS										
d	Academic	Medium to Low	REFRACTO	REFRACTORY METAL COATINGS										
e	Academic	Medium to Low	DEVELOPN	IENT OF MA	CHINING T	ECHNIQUES	FOR REFRAC	TORY META	LS			$ \rightarrow $		
f	Academic	Medium to Low	DEVELOPN	IENT OF ME	THODS TO	WELD/JOIN	REFRACTOR	(METALS				$ \rightarrow $		
g	All	Low	REVIEW/A	REVIEW/ASSESS NEED(S) FOR STANDARDIZAITON OF PROCESSING/MACHINING OF REFRACTORY ALLOYS										
		Timeline in Years	1	2	3	4	5	6	7	8	9	10		
			Short	Term	Ν	/ledium Ter	m			Long Term				

#	Stakeholder(s)	Priority				A. 2.	High Entro	py Alloys (H	IEAs)				
а	Academic	Medium	ENGINEER	ED COMPUT ING (ICME) I FION PREDIC	MODELS FO								
b	All	High	ESTABLISH	STABLISH HEA MATERIALS DATABASE FRAMEWORK									
с	Academic	Low	CROSS-INE	CROSS-INDUSTRY ASSESSMENT OF HEA POTENTIALS									
d	Academic	Low	DEVELOP	COMMERCIA	AL HEA MAN	IUFACTURIN	IG PROCESSI	ES				$ \rightarrow $	
		Timeline in Years	1	2	- 5	4	5	6	/	8	9	10	
			Short	Term	N	ledium Teri	n			Long Term			

#	Stakeholder(s)	Priority				A. 3. Cer	amic Matrix	Composite	s (CMCs)				
а	All	High	TECHNIQU	WEAVING ES TO IMPR Y OF EXISTIN									
b	All	High	DEVELOP (CMC FASTEN	ING TECHN	IQUES							
с	Academic & SMEs	Medium		DIVERSITY O S BY INCENT		LE RESEARCH PPLIERS							
d	All	High	CERAMIC	COATINGS									
e	Academic & OEMs	Medium		R&D COLLABORATION BETWEEN CMC AND COMBUSTION STRATEGIES									
f	All	Medium		ENT DEVELO INCREASED		STANDARDS ATION							
g	All	High to Medium	DEVELOP N	MATERIALS F	ROPERTIES	CMCs DAT	ABASE						
h	All	Medium	MINIMUM R&D PERFORMANCE STANDARDS AND TEST PROCEDURES							\rightarrow			
i	Academic & OEMs	Low	DEVELOP FIBER INTERFACE COATINGS, OPERATING PROCEDURES TO ADDRESS LOW TEMPERATURE CRACKING										
			1	2	3	4	5	6	7	8	9	10	
		Timeline in Years	Short	_		۔ Nedium Teri	-			Long Term		20	

#	Stakeholder(s)	Priority				A. 4. T	nermal Barri	er Coatings	(TBCs)				
			DEVELOP	NON-INTERF	ACE COATIN	NG PROCESS	ES TO						
а	OEMs & SMEs	High	PREVENT	HANDLING A	ND INSTAL	ATION DAM	IAGE						
b	All	High to Medium	MACHINI	NG OF COOL	ING HOLES	THROUGH T	вс						
с	OEMs & SMEs	High to Medium	INVESTIGA TBC INTEG	ATION OF FIL	.M COOLING	6 HOLE IMP#							
d	Academic	Medium		VINIMUM R&D PERFORMANCE STANDARDS AND EST PROCEDURES									
e	All	High	OPERATIO	OPERATIONAL LIFING FOR BARRIER COATINGS - THERMAL SHOCK RESISTANCE REQUIREMENTS									
f	All	High	RESISTAN	CE TO CORR	DSIVE COND	ITIONS @ H	IGH TEMPS					$ \rightarrow $	
g	All	High	RESISTAN	CE TO CORR	OSIVE COND	ITIONS @ L	OW TEMPS					$ \longrightarrow $	
h	All	High	INVESTIGATION OF COATING PROPERTIES/EFFECTIVENESS OVER OPERATIONAL LIFECYCLE(S)								$ \rightarrow $		
i	Academic	Low	DEVELOP TBC MATERIAL INTERACTION/BONDING MATRIX										
			1	2		4	F	6	7		0	10	
		Timeline in Years	1	2	3	4	5	6	/	8	9	10	
			Short	Term	N N	/ledium Ter	n			Long Term			

B. Additive Manufacturing that Enables New Design(s) and Engineering for Advanced Gas Turbines

The recommendations contained within the Advanced Gas Turbine Manufacturing Technology Roadmap Focus Area on Additive Manufacturing outline the necessary pre-competitive steps for developing and characterizing new industrial materials, testing standards and certification parameters enabling the introduction of new additive manufacturing processes, materials and concepts into the design, engineering and manufacturing of gas turbines and rotating machinery.

Primary subtopics included within the Additive Manufacturing that Enables New Design(s) and Engineering for Advanced Gas Turbines focus area include:

- Thermo-mechanical models
- Process Standards
- Feedstock materials
- Design & Engineering for Gas Turbines Enabled by New Processes & Materials

Priority recommendations within the Additive Manufacturing focus area include but are not limited to:

- Development, Verification and Validation of Thermomechanical Models for Additive Manufacturing Processes
 - Industry-wide pre-competitive efforts on developing baseline models, in-situ integration and verification and validation procedures
- Set Baseline Fundamentals to Accelerate Standards for Additive Manufacturing Processes
- Utilization of SME Expertise and Best Practices
- Development of Feedstock Standards
 - Feedstock Data Reporting & Specifications
- Mixed Material Feedstock Development
- Engineering for Additive Processes

			F	ocus Area	B: Addit	ive Manu	facturing						
#	Stakeholder(s)	Priority				B.1.	Thermome	chanical Mo	dels				
a.	All	High		MENT OF TH			DDELS						
ь.	All	High	NATIONAI LAB/ACAE LED EFFOR										
b)(1)	Academic & National Labs	High	MACRO-S MODELS										
b)(2)	Academic & National Labs	High to Medium	MICRO-SC	CRO-SCALE MODELS									
b)(3)	All	High	IN-SITU IN	N-SITU INTEGRATION									
b)(4)	All	High to Medium	METHODS MODELS	METHODS AND REFERENCE DATA TO VALIDATE									
c.	All	Medium	DEVELOP	AM MATERI. A	AL/PROCESS	S DATA COLL	ECTION						
c)(1)	All	Medium to Low	SHARING	CONVENTIO	NS			•					
c)(2)	All	Medium to Low	CONTRIBUTION CONVENTIONS										
c)(3)	All	High to Medium	IDENTIFIC	ATION OF N	ECESSARY P	ARAMETERS							
d.	All	High	ICME CON	IPUTATION/	AL TOOLS AN	ND WORKFL	ows						
		Timeline in Years	1	2	3	4	5	6	7	8	9	10	
		rimenne in rears	Short	Term	N	ledium Ter	m			Long Term			

#	Stakeholder(s)	Priority					B.2. Process	s Standards					
a	SMEs	High	UTILIZATION SME EXPER AND BEST PRACTICES										
ь	All	Medium to Low	STANDARDS NON-INSTA COMPONEN										
c	All	High	SET BASELIN		VENTALS TO	ACCELERAT	E						
d	All	Medium to Low		EVELOP STANDARDS FOR MACHINING ADDITIVE IANUFACTURING-PRODUCED COMPONENTS									
e	All (Including Government)	High to Medium	PROCESS M	PROCESS MEASUREMENT & CONTROL									
f	OEMs & SMEs	High to Medium	POST PROC	ESSING STA	ANDARDS								
g	OEMs & SMEs	Low	PRIORITIZATION OF MACHINE STANDARDS OVER COMPONENT STANDARDS										
h	All	High	MIXED MAT	FERIAL PRO	CESSING TH	ROUGH AD	DITIVE MAN	UFACTURIN	G			$ \rightarrow $	
		Timeline in Years	1	2	3	4	5	6	7	8	9	10	
		in rears	Short T	erm	N	ledium Terr	n			Long Term			

#	Stakeholder(s)	Priority				E	.3. Feedsto	ck Material	s				
a	All	High to Medium	FEEDSTOC REPORTIN SPECS										
b	All	High	FEEDSTOC	K STANDARI	DS								
c	All	Medium		EVELOP OBJECTIVE MATERIAL PROPERTY SSESSMENT PARAMETERS									
d	All	Medium	FEEDSTOC	FEEDSTOCK STORAGE									
e	All	Medium	FEEDSTOC	K IMPURITIE	S							\rightarrow	
f	All	High	MIXED MA	TERIAL FEED	DSTOCKS							$ \rightarrow $	
g	All	High to Medium	NEW VS R	ECYCLED FEE	DSTOCK							\rightarrow	
		Timeline in Years	1	2	3	4	5	6	7	8	9	10	
		imenne in rears	Short	Term	N	ledium Ter	m			Long Term			

#	Stakeholder(s)	Priority		B.4. De	sign & Engi	neering for	Gas Turbine	s Enabled b	y New Prod	esses & Ma	terials	
а	All	High to Medium	DESIGN FO	OR ADDITIVE	MANUFAC	TURING		•				
ь	All	High				LED AND/OF RING METHO						
c	All	High	ENGINEER	ENGINEERING FOR ADDITIVE PROCESSES								
d	All	High to Medium	NEW MAT	ERIALS ENAI	BLE DIFFERE	NT DESIGN	STRATEGIES	TO ACHIEVE	PERFORM/	ANCE GOALS	5	
		Timeline in Years	1	2	3	4	5	6	7	8	9	10
		rimeine in rears	Short	Term	N	Aedium Terr	m			Long Term		

C. Non-Destructive Evaluation (NDE) & Digital Thread

The recommendations contained within the Advanced Gas Turbine Manufacturing Technology Roadmap Focus Area on Non-Destructive Evaluation (NDE) & Digital Thread outline the necessary pre-competitive steps for developing and characterizing new inspection techniques and related technologies, testing standards and data management protocols and strategies enabling the introduction of new manufacturing processes, materials and concepts into the design, engineering and manufacturing of gas turbines and rotating machinery.

Primary subtopics included within the Non-Destructive Evaluation (NDE) & Digital Thread focus area include:

- Non-Destructive Evaluation (NDE)
- Digital Thread
- Digital Twins

Priority recommendations within the NDE & Digital Thread focus area include but are not limited to:

- Physical Reference Standards for Validation and Calibration of NDE Equipment
- Real-Time Sensors in Areas Critical for Process Management and Control
- Non-Destructive Evaluation Methods for Ceramic Matrix Composites
- Cybersecurity for Digital Thread
- Data Integration & Commonality Enabling Digital Threads
- Elements of Digital Twins Enabling Re-Certification

Focus Area C: Non-Destructive Evaluation (NDE) & Digital Thread

#	Stakeholder(s)	Priority				C. 1.	Non-Destru	uctive Evalu	ation				
а	All	High	NDE METH FOR CMCs	ODS									
b	All	High	PHYSICAL REFERENCE STANDARD										
с	All	Medium				RMAL BARRI PING BLADE	ER						
d	All	High to Medium	NDE METH	DE METHODS FOR AM									
e	All	High		EAL-TIME SENSORS IN AREAS CRITICAL TO PROCESS IONITORING AND CONTROL									
f	All	High	HIGH THRC			OR SCREENIN	IG						
g	Academic & OEMs	High to Medium	DEVELOP O	BJECTIVE T	BC QUALITY	PARAMETE	RS						
h	All	Medium	DATABASE	OF PROCES	S PARAMET	ERS AND EX	ISTING CON	TROLS FOR I	NDE				
i	Academic & OEMs	Medium to Low	NDE FOR COMPLEX GEOMETRIES ENABLED BY AM-PRODUCED CASTING MOLDS										
j	Academic & OEMs	Medium	DEVELOP EMBEDDED SENSORS TO MONITOR TBC DEGRADATION										
		Timeline in Years	1	2	3	4	5	6	7	8	9	10	
		nineline in rears	Short 1	[erm	N	/ledium Teri	n			Long Term			

#	Stakeholder(s)	Priority					C.2. Digit	al Thread				
а	All	High	CYBERSEC	URITY				>				
b	OEMs & SMEs	High to Medium	DATA INTE	GRATION &	COMMON	ALITY		>				
с	All	Medium	BIG DATA	STORAGE/A	NALYSIS			>				
d	All(IGT*)	High to Medium	ACCESSIBI	LITY/RIGHT-	TO-ACCESS			For IGT*				
e	Academic & OEMs	High to Medium	BIG DATA	QUALITY								
		Timeline in Years	1	1 2 3 4 5					7	8	9	10
		Short	Term	N	ledium Ter	m			Long Term			

#	Stakeholder(s)	Priority					C.3. Digit	al Twins						
a	All	High	ELEMENTS "DIGITAL TWINS" ENABLING CERTIFICA	RE-										
b	OEMs & SMEs	High to Medium		HIRD-PARTY CLEARINGHOUSE FOR OPERATIONAL										
c	OEMs & SMEs	High to Medium		COMMON CONVENTIONS FOR MAINTENANCE, REPAIR AND OPERATIONAL INFORMATION										
d	All	High to Medium	DIGITAL TV	VINS FOR O	PERATION 8	PERFORM	ANCE 🔿							
e	All	High to Medium	SUPPLY CHAIN INTEGRATION IN DIGITAL THREAD											
		Timeline in Years	1	2	3	4	5	6	7	8	9	10		
			Short '	Term	N	/ledium Ter	m			Long Term				

D. Maintenance Repair and Overhaul / Life Cycle Management

The recommendations contained within the Advanced Gas Turbine Manufacturing Technology Roadmap Focus Area on Maintenance Repair and Overhaul / Life Cycle Management outline the necessary precompetitive steps for developing and characterizing new industrial materials, testing standards and certification parameters enabling the introduction of new processes, materials and concepts into the maintenance, repair and overhaul of gas turbines and rotating machinery.

Primary subtopics included within the Maintenance Repair and Overhaul / Life Cycle Management focus area include:

- Additive Repair & (Re-)Certification
- Advanced Material Repair Methodologies
- On-Demand Legacy Parts & Data Resources
- Optimizing & Customizing Repair

Priority recommendations within the Maintenance, Repair and Overhaul (MRO) focus area include but are not limited to:

- Additive Repairs of Parts Manufactured with Traditional Methods
- Pathway to Certification of Additive Manufacturing-produced Parts for Aviation and IGT Repairs
- Develop Repair Techniques for Ceramic Matrix Composite materials
- Develop/Improve Techniques for Joining of Disparate Materials
- Establish a Cross-Industry Digital Library of Legacy Tooling
- Improving Consistency of Overhaul Procedures
- Building Visualization Tools and Digital Geometric Twins for the MRO Environment

			1000071		itenance	nepun e	overnaar						
#	Stakeholder(s)	Priority				D. 1.	Additive Re	pair Certifi	cation				
a	All	High	ADDITIVE REPAIRS C PARTS MANUFA ED WITH TRADITION METHODS	DF CTUR NAL	•								
ь	All	Medium to Low	DEVELOP DEFECTS	TECHNIQUES	TO MITIGA	TE INTERNA	L						
c	Government	Low	ENABLING	GON-SITE REF	PAIRS								
d	Academic & OEMs	High to Medium	MODULA	RIZED DESIGN	N TO ENABLI	E MODULAF	REPAIR						
e	All	High	PATH TO F	PATH TO RECERTIFICATION									
f	OEMs & SMEs	Medium	DEVELOP A PROCESS FOR CERTIFICATION/ACCREDITATION OF REPAIR SHOPS										
g	Gov't & SMEs	High to Medium	INTRODU	CING/MANA	GING ELEMI	ENTS OF REF	AIR ENVIRO	NMENT WI	TH ADDITIVE	PROCESS		$ \rightarrow $	
		Timeline in Years	1	2	3	4	5	6	7	8	9	10	
		rimenne in rears	Short	Term	N	ledium Ter	m			Long Term			
#	Stakeholder(s)	Priority				D.2.	Advanced I	Vaterial Re	epair				
а	Gov't & SMEs	Medium	PARTIAL T	BC REPAIR									
b	All	Medium	DEVELOP TBC CLEANING PROCEDURES										
c	All	High	DEVELOP CMC REPAIR TECHNIQUES JOINING OF DISPARATE MATERIALS (DIFFERENT ALLOYS, METALS/CERAMICS)										
d	All	High	JOINING C	OF DISPARATI	E MATERIAL	S (DIFFEREN	IT ALLOYS, N	1ETALS/CEF	RAMICS)				
e	All	High to Medium	REPAIRS C	REPAIRS OF DIRECTIONALLY SOLIDIFIED OR SINGLE-CRYSTAL PARTS									
f	OEMs & SMEs	Medium	DEVELOP	TECHNIQUES	TO REVERS	E CREEP DA	MAGE						

Focus Area D: Maintenance Repair & Overhaul (MRO)

Medium	DEVELOP	DEVELOP TECHNIQUES TO REVERSE CREEP DAMAGE											
Timeline in Years	1	2	3	4	5	6	7	8	9	10			
Timeline in tears	Short	Term	N	ledium Teri	n	Long Term							

#	Stakeholder(s)	Priority				D.3. OI	n-Demand L	egacy Parts	& Data				
a	OEMs & SMEs	High	DEVELOP A LIBRARY O LEGACY TOOLING										
b	All	Low	OPTICAL SCANNING LEGACY PA										
с	OEMs & SMEs	High to Medium	DATABASE	OF LEGACY	PARTS								
d	Gov't & SMEs	Medium	SPECIFICAT	FION MODE	LLING FROM	/ USED PAR	rs	•					
e	Academic	Low	LEGACY TO	OLING LOA	N CLEARING	G HOUSE PR	DGRAM	•					
f	All	Medium to Low	COMMON	REPAIR TEC	HNOLOGY	PLATFORM(5)					\rightarrow	
g	All	High to Medium	IMPROVIN	IMPROVING CONSISTENCY OF OVERHAUL PROCEDURES									
		Time aliana in Maana	1	2	3	4	5	6	7	8	9	10	
	Timeline in Years			Term	Medium Term			Long Term					

#	Stakeholder(s)	Priority				D.4. Op	timizing & (Customizing	Repair			
а	OEMs & SMEs	Medium		IG REFURBIS DAMAGE A		NGS BASED OTS						
b	OEMs & SMEs	Medium to Low		RELATED TO MPROVE		NG" / RETRO RMANCE	-					
c	All	High to Medium		IG & CUSTO OPERATION		PAIRS TO ME CATIONS	et 🔪					
d	All	High		BUILDING VISUALIZATION TOOLS FOR MRO ENVIRONMENT AND DIGITAL GEOMETRIC TWINS TO IMPROVE VISUALIZATION/ACCOUNTABILITY								
	Timeline in Yea		1	2	3	4	5	6	7	8	9	10
			Short	Term	Medium Term			Long Term				

E. Workforce & Safety

The recommendations contained within the Advanced Gas Turbine Manufacturing Technology Roadmap Focus Area on Workforce & Safety outline important elements to be considered in developing effective workforce recruitment, training and retention programs on behalf of the gas turbine industry, as well as highlight relevant workplace safety and environmental health issues that are important to the turbine manufacturing and repair community. Addressing these workforce development and health and safety issues will help enable the safe and effective introduction of new processes, materials and concepts into the manufacturing, operation, maintenance and repair of gas turbines and rotating machinery.

Primary subtopics included within the Workforce & Safety focus area include:

- Workforce Pipeline
- Workforce Training
- Workforce Retention
- Safety

Priority recommendations within the Workforce & Safety focus area include but are not limited to:

- Security Clearances
- Cybersecurity Training & Resources
- Additive Manufacturing Operations Training (for Skilled Technicians)
- Additive Manufacturing-Specific OSHA Training
- Increasing Academia's awareness of and engagement in gas turbine industry priorities
- Develop Clear Career Pathways for Members of the Technical Workforce
- Capture Institutional Knowledge

Focus Area E: Workforce & Safety

#	Stakeholder(s)	Priority					E.1. Workfo	rce Pipeline					
а	OEMs & SMEs &	High	SECURITY		`								
a	Government		CLEARAN	CES /									
b	All	High to Medium		CREASED PROMOTION OF PPRENTICESHIPS/VOCATIONAL SCHOOLING									
c	All	High to Medium	FELLOWSH	FELLOWSHIP PATHWAY									
d	All	High to Medium	FOREIGN	FALENT									
e	All	High	INCREASE	ACADEMIA'	S AWARENE	SS OF INDU	STRY REQUIF	REMENTS				\geq	
		Timeline in Years	1	2	3	4	5	6	7	8	9	10	
		Timeline in Years	Short Term		Medium Term					Long Term			

#	Stakeholder(s)	Priority					E.2. Workfor	rce Training					
			CYBERSECU	JRITY									
а	All	High	TRAINING										
b	All	High	ADDITIVE I	MANUFACT	URING OPE	RATIONS TR	AINING						
			MATERIAL	S-RELATED I	DATA SCIEN	CE AND							
с	Academic	High to Medium	INFORMAT	FICS APPRO	ACHES								
d	Academic	Medium				ANDS-ON TR							
e	All	Medium	PRODUCT	CHAIN TRAI	NING								
			ACADEMIC	TRAINING	TO DESIGN	FOR ADDITIN	'E						
f	Academic	High to Medium	MANUFAC	TURING									
g	All	High to Medium	TECHNOLO	GY CURREN	NCY TRAININ	IG (CONTINU	JING EDUCA	TION)				\rightarrow	
h	All	High	CAPTURIN	G INSTITUTI	IONAL KNO	VLEDGE						\rightarrow	
i	All	High to Medium	STRATEGIE	S FOR DEAL	ING WITH D	EMOGRAPH	IC DIVIDE					\rightarrow	
		Timeline in Years	1	2	3	4	5	6	7	8	9	10	
				Term	N	/ledium Ter	n	Long Term					

#	Stakeholder(s)	Priority				E	3. Workfor	ce Retentio	n				
а	All	High		CLEAR CARE		AYS FOR MEI	VIBERS						
b	OEMs & SMEs	Medium		E BALANCE: JR GUIDELIN		OLUNTARY	MAX	•					
c	OEMs & SMEs	Medium	WORK-LIFE BALANCE: IMPROVEMENT OF FLEX-HOUR SYSTEMS										
e	All	High to Medium	NURTURE	SUPPORT ST	RUCTURES,	NETWORKS	& RESOURC	ES FOR CAR	REER DEVELO	OPMENT		\rightarrow	
		Timeline in Years	1	2	3	4	5	6	7	8	9	10	
	limeline in rears			Short Term Medium Term					Long Term				

#	Stakeholder(s)	Priority		E.4. Safety									
а	All	High	TRAINING	MANUFACT (AM POWD (PLOSION/II	ER	CIFIC OSHA	ν)						
b	SMEs	Medium		ABLE US SPRAY COATING BY ADDRESSING OSHA GULATORY CONCERNS									
c	Government	Medium		REVIEW OF MSDS SHEETS FOR POWDERS VS. SOLID MATERIALS									
d	Government	High to Medium	ON-SITE R	EPAIR - ADD	ITIVE MFG S	SAFETY IN U	NCONTROLL	ED ENVIRON	IMENTS			\rightarrow	
e	Academic to All	Medium	INADVERT	ENT AM PO	NDER OXID	ATION (MUI	TI-MATERIA	LAM)				$ \rightarrow $	
f	All	Medium to Low	NON-DEST	NON-DESTRUCTIVE EVALUATION RADIATION SAFETY REGULATIONS									
		Timeline in Years	1	2	3	4	5	6	7	8	9	10	
	limeline in Years		Short	Term	Ν	/ledium Ter	m		Long Term				

Conclusion & Next Steps

Despite the high degree of competitive interests and strict confidentiality regulations of gas turbine technology, numerous high priority, industry-wide issues have been identified, that must be addressed to accelerate technology development and ensure the continuing competitiveness of the US gas turbine industry. Through extensive dialogue with industry representatives, priorities for such pre-competitive collaborations in the fields of materials, additive manufacturing, non-destructive evaluation, digital thread, maintenance, repair & overhaul, and workforce & safety have been identified and outlined. The CAPE team will continue to work to disseminate information regarding the specific technology priorities and timelines contained in this roadmap to industry leaders, policy and association leadership and relevant program directors in federal and state governments across the country and provide this information and resources to its stakeholder community. The CAPE and its partners look forward to continuing to be a key part of the conversation in advancing the development of these technologies, and catalyzing cross-industry and cross-disciplinary collaboration to enable and accelerate the next generation of gas turbine technologies for power generation and propulsion applications.

Consortium for Advanced Production and Engineering of Gas Turbines and Rotating Machinery (CAPE) Advanced Gas Turbine Manufacturing Technology Roadmap Stakeholders & Contributors

Advanced Magnet Lab	FM Global	Power Systems Mfg., LLC / Ansaldo			
Aerojet Rocketdyne	Gas Technology Institute	Energia			
Aerospace Industries Association	Gas Turbine Association	Pratt & Whitney			
Air Force Research Lab (AFRL)	GE Aviation	Pratt & Whitney Power Systems			
Alcoa	GE Global Research	Purdue University			
American Electric Power	GE Power & Water	Renaissance Services Inc.			
American Institute of Aeronautics	Georgia Tech – Inst. for Materials	Rolls Royce			
and Astronautics (AIAA)	Georgia Tech - Strategic Energy	Samsung Techwin			
American Society of Mechanical Engineers (ASME)	Haynes International	Siemens Energy			
Ansaldo Energia	Honeywell International	Siemens Energy, Power Generation Services Division			
Aspen Technologies	Impact Technologies	Solar Turbines			
Atlantic Precision	Kelelo Engineering	Southern Company			
Chevron	Keystone Synergistic Enterprises	Southwest Research Institute			
Chromalloy	Longview Energy Associates	Space Florida			
Delta Air Lines	Mainstream Engineering	Stony Brook University			
Doosan	Mitsubishi Hitachi Power Systems Americas	Strategic Power Systems			
Dresser-Rand		Texas A&M University			
Duke Energy	Napoleon Engineering Services	Turbo Machined Products			
Echogen Power	National Aeronautics and Space Administration (NASA)	Turbomachinery International			
Embry Riddle Aeronautical	National Center for Defense	United Technologies Corporation			
University	Manufacturing and Machining	University of Central Florida			
Energy Florida	National Energy Technology Lab	University of Connecticut			
EPRI - Electric Power Research Institute	Natole Turbine Enterprise	University of Notre Dame			
Executive Office of the Governor of	NAVAIR	University of Pittsburgh			
Florida/Office of Policy & Budget	NIST	University of Tennessee - Knoxville			
Federal Aviation Administration	North Carolina State University	US Advanced Ceramics Association			
Florida Institute of Technology	Oak Ridge National Laboratory	Vibrant NDT			
Florida Power & Light	PCC Airfoils, LLC	Virginia Tech			
Florida Turbine Technologies	Penn State	Williams International			
	PennWell/Power Generation Int'l	winnams international			

For questions or further information regarding the CAPE consortium or additional details on the Advanced Gas Turbine Manufacturing Technology Roadmap, please visit:

https://EnergyFlorida.org

or contact the Energy Florida/CAPE team at:

info@energyflorida.org

Consortium for Advanced Production and Engineering of Gas Turbines